Solving Unbounded Knapsack Problem Using an Adaptive Genetic Algorithm with Elitism Strategy

نویسندگان

  • Rung Ching Chen
  • Cheng-Huei Jian
چکیده

With the popularity of sensor networks, solving the knapsack problem has become important in selecting the best combination of sensor nodes. Many methods have been proposed to solve the Knapsack problem, but few of them have used the genetic algorithm, especially in unbounded Knapsack problems. In this paper, we use the genetic algorithm to solve the unbounded Knapsack problem. We combine an elite strategy and a self adapting system into the genetic algorithm. Using the elite strategy overcomes the problem of the slow convergence rate of the general genetic algorithm. The elite strategy retains good chromosomes and ensures that they are not eliminated through the mechanism of crossover and mutation, ensuring that the features of the offspring chromosomes are at least as good as their parents. The system automatically adapts the number of the initial population of chromosomes and the number of runs to be executed in the genetic algorithm. It will obtain the best value from the chromosomes of each run executed, and retain the values in an elite group. The optimal value is then taken from the elite group and adopted as the real solution. Experimental results have shown that our method rapidly discovers the best solution of the problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A SOLUTION TO AN ECONOMIC DISPATCH PROBLEM BY A FUZZY ADAPTIVE GENETIC ALGORITHM

In practice, obtaining the global optimum for the economic dispatch {bf (ED)}problem with ramp rate limits and prohibited operating zones is presents difficulties. This paper presents a new andefficient method for solving the economic dispatch problem with non-smooth cost functions using aFuzzy Adaptive Genetic Algorithm (FAGA). The proposed algorithm  deals  with the issue ofcontrolling the ex...

متن کامل

An Improved Genetic Algorithm Based on Adaptive Repair Operator for Solving the Knapsack Problem

Problem statement: Knapsack problem is a typical NP complete problem. During last few decades, Knapsack problem has been studied through different approaches, according to the theoretical development of combinatorial optimization. Approach: In this study, modified evolutionary algorithm was presented for 0/1 knapsack problem. Results: A new objective_func_evaluation operator was proposed which ...

متن کامل

Centre Of Mass Selection Operator Based Meta-Heuristic For Unbounded Knapsack Problem

In this paper a new Genetic Algorithm based on a heuristic operator and Centre of Mass selection operator (CMGA) is designed for the unbounded knapsack problem(UKP), which is NP-Hard combinatorial optimization problem. The proposed genetic algorithm is based on a heuristic operator, which utilizes problem specific knowledge. This center of mass operator when combined with other Genetic Operator...

متن کامل

An Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem

A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...

متن کامل

An Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem

A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007